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Summary. The subspectral origin of three families of molecules based on 
cyclobutadiene, benzene, and cyclooctatetraene is discussed. The graph theo- 
retical decomposition of the fourfold cyclooctatetraene molecular graphs is 
presented in explicit form and has expedited the computation of their 
respective eigenvalues. The cyclic automorphism approach of Davidson is 
clarified and merged with the author's methodology leading to a more 
comprehensive procedure for rapidly determining the characteristic poly- 
nomial and eigenvalues of chemically significant molecular graphs. The graph 
theoretical determination of the characteristic polynomials and eigenvalues of 
two sixfold coronene-related molecular families is presented. 
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1. Introduction 

Our previous work [ 1] traced the genesis of one type of subspectrality ultimately 
to precursor molecules of threefold or greater symmetry. Molecular graphs with 
a greater than twofold axis of symmetry possess a doubly degenerate eigenvalue 
subset [2]. Thus, deletion of a molecular vertex, replacement of a CH vertex by 
a heteroatom vertex, or replacement of H by a conjugated substituent leads to 
successor molecular graphs which still retain these eigenvalues once. Herein, 
another type subspectrality associated with three related families based on 
cyclobutadiene, benzene, and cyclooctatetraene is traced. Cyclobutadiene, ben- 
zene, and cyclooctatetraene all possess the eigenvalues of ___ 2, and all the 
eigenvalues of cyclobutadiene (0, 0, + 2 )  are contained in cyclooctatetraene. It 
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will be shown that these three molecules are the first members of three related 
molecular series having twofold, threefold, and fourfold symmetry, respectively. 
Throughout this paper the carbon and hydrogen atoms and the pTr-bonds in all 
molecular graphs will be omitted and only the C - C  a-bond skeleton will be 

/Iq 
shown. The various types of vertices referred to herein are methylene = C ~ H  

//H 
shown as a primary (degree one) graph vertex, methine = C \  shown as 

/ \ 

secondary (degree two) graph vertex, and carbon = C (  as shown as a tertiary 

(degree three) graph vertex. Table 1 summarizes the notation used herein. For a 
comprehensive review about the importance of the characteristic polynomial, one 
should refer to the recent work of Trinajstic [3]. 

When two different conjugated polyene molecules have some common eigen- 
values, they are said to be subspectral [2, 3]. Just as isomers are more similar 
than nonisomers and molecules with the same set of functional groups are more 
similar than molecules with different functional groups, subspectral molecules are 
more similar than molecules with no eigenvalues in common. Three subspectral 
families are formed from cyclobutadiene, benzene, and cyclooctatetraene. The 
members of the cyclobutadiene family have a twofold axis of symmetry, the 
benzene family members have threefold symmetry, and the members of the 
cyclooctatetraene family have a fourfold axis of symmetry. The origin of the 
subspectrality in these related families will be presented in this paper. 

Table 1. Glossary of terms 

a4 
a6 

(~o) 
~3 

a4 
B 
dl 
e(i , j )  

ek 

G 

h 
k 
N (N~) 
P ( G ; X )  
q 

V 

X 
z~ 

Fourth coefficient in the characteristic polynomial 
Sixth coefficient in the characteristic polynomial 
HMO Coulomb integral (of carbon) 
No. of branches on a trigonal ring 
No. of branches on a tetragonal ring 
HMO exchange integral 
No. of vertices of degree-/ 
No. of edges with a vertex of degree-/at one end and a vertex 
of degree-j at the other end 
An edge of weight k 
Energy level or HMO eigenvalue 
Total/rn energy 
A molecular or isoconjugate graph 
A molecular graph with a single weighted vertex 
A molecular graph with a single weighted edge 
The weight of a heteroatom vertex [h = (ct x - ac)/fl] 
The weight of an edge [k = flcx/flcc] 
No. of (carbon atom) vertices 
Characteristic polynomial of a molecular graph 
No. of C - C  a-bond edges 
No. of rings (cycles) of n vertices 
Vertex 
(e -- a)/fl = graph eigenvalue 
Cycles containing edge k 
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While there is no doubt that 1,3-cyclobutadiene and 1,3,5,7-cyclooctatetraene 
possess strong similarities and have the common eigenvalues of 0, 0, +2, one 
might legitimately question their similarity to benzene which also has the 
eigenvalues of + 2. The absence of the zero eigenvalues in benzene makes it less 
similar to the hypothetical square cyclobutadiene and planar cycloctatetraene 
molecules whose real chemistry is unknown, other than that they are antiaro- 
matic while benzene is known to be aromatic. This latter dominant feature for 
these molecules should not be allowed to distract us from the qualitative thesis 
propounded in the prior paragraph suggesting that, other things being equal, 
subspectral molecules are expected to be more similar than molecules with no 
eigenvalues in common. Obviously, the magnitude of this subspectrality/similar- 
ity effect will be larger for molecules where the common eigenvalues include the 
frontier molecular orbitals (i.e., the HOMO and LUMO) which dominate their 
chemistry, and for molecules having a larger intersection of common eigenvalues. 
Also, the intervention of dominant specialized effects not directly governed by 
eigenvalues cannot be precluded and will have to be dealt with separately. 
Notable examples would include aromatic/antriaromatic, steric and size effects. 
Although, the concept of similarity is vague, it is nevertheless a useful descriptive 
means for comparing and visualizing chemical phenomena. The study of different 
ways of comparing molecules will eventually contribute to our better understand- 
ing of their chemistry. Herein, we have proposed one type or molecular similar- 
ity. The degree of overall influence of this proposed subspectral/similarity effect 
can only be determined after the factors which govern this phenomenon have 
been elucidated, and then it must be balanced against other effects. 

Using cyclic automorphism subgroups, Davidson published a seminal paper 
on the spectral analysis of graphs [4]. The automorphism group of a molecular 
graph is the set of adjacency and edge-weight preserving isomorphisms of the 
structure. By associating graphs having cyclic automorphisms with symmetrical 
polymer networks composed of simpler monomeric substructural repeating units, 
it can be shown that the spectrum of eigenvalues of many molecular families 
devolves to the evaluation of a single monomer-derived irreducible subgraph 
with only one parameter (h). Thus, graphs with cyclic automorphism subgroups 
are regarded for purposes of spectral analysis as polymers or oligomers made up 
of fundamental monomeric building units (subgraphs). This approach also 
facilitates the recognition of molecular systems sharing a subspectrum of identi- 
cal eigenvalues. Herein, we clarify and expand Davidson's approach while 
merging it with our graph theoretical methods. 

The twofold symmetrical polyene molecules given in Fig. 1 have previously been 
studied experimentally or theoretically [5-8], and, heteroatom isoskeletal analogs 
of the pentagonal ring containing species in Figs. 1 and 2 are also known [9-11]. 
Study of the liquid crystal properties of derivatives of some of the related threefold 
molecules has been pursued [12-13]. Biphenylene (Fig. 1) and tetraphenylene 
(Fig. 2) were synthesized by CuC12 coupling of the dimagnesium Grignard of 
o,o'-dibromobiphenylene [ 14]. The tetraoxide of [2,3] tetranaphthylene (tetra- 
naphthol[2,3]cyclooctatetrene, Fig. 2) has been characterized [15]. Bitropylene 
is an isomer of anthracene{phenanthrene, and dibenzo[b,h]biphenylene 
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Bicyclopentadienylene 

[1,2:2',1 '] Biindenylene 

Bitropylene Biphenylene 

[2,3:2',3'] Binaphthylene 

[1,2:2',1 '] Binaphthylene [1,2:1 '.2'] Biacenaphthylene 

[1,2:2',1 '] Bipyrenylene 
Fig. 1. Twofold molecular 
graphs of this study 

([2,3:2',3']binaphthylene) and dibenzo[a,g]biphenylene ([1,2,:2',l']binaphthyl- 
ene), which are isomers of benzo[a]pyrene, have been synthesized [16, 17]. A 
close isomer of [1,2:2',l']bipyrenylene (Fig. 1) has been synthesized [18] and is of 
carcinogenic interest, as are the isomers of benzo[a]pyrene. 

2. Common fragment subgraphs with edge weight of two 

In the decomposition of threefold ring centric molecular graphs, one obtains a 
fragment subgraph with an edge of weight two [1]. This same fragment is also 
obtained from twofold ring centric molecular graphs in which the central ring is 
four membered [3]. Thus, triphenylene and biphenylene both have the following 
fragment subgraph and associated eigenvalues: 

Q + 2.53209 
2 + 1.34730 

_+ 0.87938 

P(G.; X) =X6-9X4 +18X2-9 



Study of the origin of subspectrality in molecular graphs. Part II 157 

Tetracyclopentadienylene 

[1,2]Tetraindenylene 

[1,2]Triindenylene 

Tetraphenylene [2,3] Tetrana phthylene 

Fig. 2. Some threefold 
and fourfold molecular 
graphs of this study 

Since the eigenvalues of biphenylene are present in tetraphenylene, the above 
subgraph and Z 6 a re  also components of tetraphenylene. 

From Fig. 3, it is apparent that [1,2:2',l']binaphthylene is subspectral to 
[1,2]tetranaphthylene, and the two molecular graphs with greater than twofold 
symmetry have doubly degenerate subsets. All three molecular graphs in Fig. 3 
have the same subspectral component. While only the first two molecules have 
been synthesized [19], an isomeric derivative of the latter has been prepared [15], 
and there is considerable interest in these molecular systems. For example, C60 
buckministerfullerene can be formed by fusing the three cove regions in triben- 
zo[a,g,m]triphenylene (Fig. 3) and then fusing the resulting bowl-shaped species 
together [20]. 

The rules for factorization of [1,2,:2'l']binaphthylene into irreducible sub- 
graphs G+ and G_, where G+ has and edge weight of 2, has been described by 
D'Amato [21]. It is only worthwhile noticing that application of Eq. (5) in Table 
2 for the single parameter of k = 0 and 2 on the following general subgraph gives 
the characteristic polynomials for both G_ and G+, respectively. 
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-+2.62675 -+2.2310 
+ 1.91503 + 1.5493 
+ 1.38476 + 1.2526 
+ 1.0 • 1.0 • 2.62675 • 2.28705 + 2.28705 
__+ 0.71779 __+ 0.23097 • 1.91503 -+ 1.65386 + 1.65386 

-+ 1.38476 -+ 1.32492 -+ 1.32492 
+ 1.0 • 1.0 • 1.0 
-+ 0.71779 -+ 0.52794 • 0.52794 

_+2.37188 --+2.37188 -+2.62675 +2.2310 
+ 1.76834 -+ 1.76834 -+ 1.91 503 -+ 1.5493 
-+ 1.36906 -+ 1.35906 -+ 1.38476 _+ 1.2526 
-t- 1,0 -+ 1,0 • 1.0 • 1.0 
+ 0.63252 _+ 0.63252 _+ 0,71 779 ___ 0.23097 

Fig. 3. Subspectrally related to molecular graphs 

Figure 4 summarizes all the G+ and G_ subgraphs and their characteristic 
polynomials and eigenvalues for common twofold cyclobutadiene ring centric 
graphs examined in this study. In addition, it should be noted that all the G+ 
subgraphs in Fig. 4 also appear in the threefold ring centric molecular graphs 
previously published [ 1, 8]. 

Symmetrical molecular graphs that can be decomposed by mirror plane 
fragmentation to give a right fragment with threefold (or greater) symmetry will 
possess the doubly degenerate eigenvalue subset and nondegenerate eigenvalues 
associated with the threefold fragment. Molecular graphs possessing a twofold 
axis of symmetry at the center of a hexagonal ring flanked by two identical 
threefold subgraphs will possess the doubly degenerate eigenvalue subset associ- 
ated with the threefold subgraphs. Tetrabenzo[a,c,l,n]pentacene has both a 
mirror plane of symmetry and a twofold axis and has the eigenvalues of 
triphenylene. Diphenanthro[9,10-a:9',10'-h] anthracene has only a twofold axis of 
symmetry and only has the doubly degenerate eigenvalues of triphenylene. 
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Table 2. Equations for calculation of characteristic polynomials of molecular graphs 
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Equation number 

(1)  a 4 = ~ ( q 2 - 9 q  + 6 N c ) -  2 r 4 - d l - d a -  3 d s - 6 d 6  . . . .  

(2) a6 = _ ~ ( q 3  _ 2 7 q 2  + 116q)  - -  N o ( 3  q - -  16) - -  2 r  6 - -  e (3 ,  3) 

+ (q - -  6 )e (2 ,  1) + (q  - -  5 )e (3 ,  1) + 2(q  - 4 - -  ( x 4 ) r  4 + r 3 

(3) P ( G ;  X )  = X iv - q X  N -  2 _ 2 r  3 X N - 3 + a 4 X U  - 4 

- [2r5 - 2 (q  - 3 - ~ 3 ) r 3 ] X  N -  5 + a 6 X U -  6 + . . .  

(4)  P ( G x ;  X )  = X P ( G x  - -  vx;  X )  - -  h P ( G x  - Vx ; X )  - k 2 [ X P ( G x  - v:,; X )  - P ( G ; X ) ]  

for edge/vertex weigthed graphs 

(s) P ( G k ;  X )  = P ( G  k - e k ; X )  - k 2 p ( G k  - (ek) ;  X )  - 2 k  ~ P ( G  k - Z k ; X )  

for edge weighted graphs 

(6)  P ( G o ;  X )  = P ( G ;  X )  + P(Go  - % ;  X )  f o r  right mirror-plane fragments 

(7)  P(Gel  "~ X )  = e ( G e l  - -  eo~ ; X )  - -  P(Gel  - -  (eo~); X') + ~ P(Gel  - Z~o ; X )  

f o r  the identical fragments of vertex-centric threefold graphs 

(8) P (  G e2 ; X )  = P (  G e2 - eoj "~ X )  - -  e (  G e2 - (er ; X )  - ~ P (  G e2 - Zoo" ~ X )  

f o r  the identical fragments of ring-centric threefold graphs 

(9)  P(64/; x) = P(G; x) - P(C - (e); x) 
f o r  identical fragments of ring-centric fourfold graphs 

(10)  P ( G t ;  X )  --- P ( G  l - e , ;  X )  - P ( G  l - ( e l ) ;  X )  - h ~ P ( G ,  - Z l ;  X )  

f o r  t h e  generalized irreducible unit subgraph of ring-centric 
sixfold graphs with h = ___ 1, _ 1, __2 

3. Factorization of fourfold molecular graphs 

Figure 5 illustrates the decomposition of the fourfold cyclooctatetraene ring 
centric graph from Fig, 3; Davidson presented this decomposition scheme in 
more abstract form [4]. Here our contribution is the recognition that the 
characteristic polynomial of the (fourfold fragment, 4/) subgraph G4/ is given 
by P(G4/;X)=P(G; X)-P(G-(e);X) where G is its isoconjugate analog 
graph and G -  (e) is obtained by deleting the corresponding edge e and its 
associated vertices from G. Figure 6 summarizes all the G4/subgraphs of this study 
along with their characteristic polynomials and eigenvalues. 

Whenever a smaller bipartite graph can be embedded onto a larger one, then 
the latter will possess the eigenvalues of the former [22]. In Fig. 4, various 
nonedge-weighted molecular graphs are embeddable by methyl, ethene, allyl, and 
pentadienyl, giving eigenvalues of 0, + 1, _ x/~, and _ 1 and +_ x/~, respectively. 
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These embeddings were used as a cross-check for the computations presented in 
Figs. 4 and 6. Both 2-methylenylpentadienyl and 1,8-dimethylenylnaphthalene 
have two distinct methyl embeddings and are doubly degenerate in eigenvalues of 
zero. Both L 7 and benzyl have one distinct methyl embedding and one zero 
eigenvalue. The molecular graphs ofLs,  benzyl, 1-methylenyl-2-(l'-allyl)benzene, 
1,8-dimethylenylnaphthalene, 1-methylenyl-2-(l'-allyl)naphthalene, 1,2-divinyl- 
naphthalene, and 1-methylenyl-9-vinylphenaleny are embeddable by ethene and 
have eigenvalues of __+ 1.0. Many of the 2-edge weighted molecular graphs (Fig. 
4) and their complex-edge weighted analogs (Fig. 6) were simultaneously em- 
beddable by ethene and have eigenvalues of _ 1.0. The molecular graphs of L 7 
and l-methylenyl-2-vinylbenzene were embeddable one way and 1,2-divinylben- 
zene and 1-methylenyl-2-( l'-allyl)naphthalene were embeddable two ways by allyl 
and had the corresponding number of eigenvalues of +x/~ .  1,8-Dimeth~_lenyl- 
naphthalene was embeddable by pentadienyl and has s = _ 1.0 and _.+x/3. 

4. Factorization of sixfold coronene-related molecular graphs 

The decomposition of threefold coronene-related molecular graphs has been 
presented [23]. Herein, the factorization of two types of sixfold coronene-related 
molecular graphs will be detailed as per Davidson's method [4]. Davidson used 
cyclic automorphism subgroups to factorize coronene into a generalized irre- 
ducible unit subgraph with a single parameter for the purpose of obtaining all the 

X 2 - 4  X 2 

_+2,0 0 , 0  Xs- 8X3+11X-4 L5 
2.5616 +_ ,,/3, X6 - 9X4 + 17X 2 - 4X - 4 

1.0 4- 1.0 2.6109 Xe - 5X4 + 5X2 

, , ~  - 1.0 0 1.2003 _+ 1.9021 
- 1 , 5 6 1 6  0.76408 4- 1.1756 
- , . ~  - 1.0 - 0 . 3 9 3 8 8  O, 0 

-1 .7297  
- 2 . 4 5 1 8  

X6-9X4+18X2-9 L6 

• 2.53209 4-1.8019 X 7 - 10X s + 26)( 3 - 16X - 4 L7 

+ 1.3473 + 1.2470 
+ 0.87938 + 0.44504 2.5166 _+ 1.8478 
- - 1.5524 4- x~2, 

1.1701 • 0.76537 

- 0 . 2 8 7 3 4  0 
- 0 . 6 8 8 8 9  
-1 .7817  
- 2 . 4 8 1 2  

Fig. 4. Fragment subgraphs of related twofold and fourfold molecular graphs 
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~ ~ G _  G4/ 

J. R. Dias 

P ( G 4 / ; X )  = P ( n a p h t h a l e n e ; X )  - P ( s t y r e n e ; X )  

= ( X  ~ o _ 1 1 X  e + 4 1 X  8 - 6 5 X  4 + 4 3 ) (  2 - 9)  - ( X  s - 8 X  6 + 1 9 X  4 - 16 ) (  2 + 4 )  

= X  ~ o _ 12) (  8 + 4 9 X  6 - 8 4 X  4 + 69 ) (  2 - 13 

+ 0 . 6 3 2 5 2  

_ 1.0 

_+ 1 . 3 5 9 0 6  

+ 1 . 7 6 8 3 5  

+ 2 . 3 7 1 8 8  

Fig. 5. Decomposition of [1,2]tetranaphthylene into fragment subgraphs 

eigenvalues for  coronene. However, his method was not made explicit and he 
used symbolic and notational devices which were detailed in manuscripts submit- 
ted (references 1-3) [4] but apparently never published. Figure 7 gives two 
general coronene-related series and their corresponding irreducible unit sub- 
graphs. Here G,- represents pendant fragment subgraphs that do not destroy the 
sixfold symmetry associated with coronene and h = _+ 1, ___ 1, and _+2. Since 
these molecular graphs have a doubly degenerate eigenvalue subset given by 
h = _+ 1, if G; is a bipartite subgraph (i.e., corresponds to an alternant hydrocar- 
bon) then obtaining all the eigenvalues for these molecular graphs reduces to 
obtaining the eigenvalues of the irreducible unit subgraph for h = 1 and 2. By the 
pairing theorem and the double degeneracy, the remaining eigenvalues are simply 
written down from those obtained. This leads to substantial reduction in effort, 
since we have shown how to obtain the characteristic polynomial of small 
to moderate sized molecular graphs rapidly by using the equations in Table 2. 
This approach will now be illustrated by solving the eigenvalues for hexaben- 
zo[a,d,g,j,m,p]coronene and hexabenzo[bc,ef, hi, kl, no,qr]coronene, which have 
been obtained previously [8]. 
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X 12 _ 15X w + 8 2 X  e - 2X 7 - 2 0 6 X  6 

+12XS + 2 4 5 X 4 -  24X3 -125X2  +14X  + 1 8  

2 ,52493  
1 .86033  

1.63751 

• 1.0, 1,0 

0 , 6 2 5 7 8  
- 0 . 3 8 6 8 9  

- 1 , 3 0 6 3 0  
- 1 .50060  

- 2 . 0 5 3 4 5  

- 2 . 4 0 1 3 0  

X ~ 4 - 1 7 X 1 2 + 1 1 1 X l O -  356X s 
+ 5 9 6 X  6 - 5 0 5 X  4 + 186) (  2 - 17 

• 2 . 4 3 7 1 0  

• 2 . 0 9 0 1 0  
• 1 .61629  

• 1 .37693  

• 1 .11642  
• 0 .89752  

• 0 . 3 6 2 9 8  

J. R. Dias 

X14 -17X~2 + 1 1 1 X l O -  357X s 
+ 6 0 4 X  6 - 5 2 6 X  4 + 2 0 8 X  2 - 25  

• 2 ,44955  

• 2 .08326  

__+ 1 .58933  

4- 1 .36830  
4 - 1 . 1 2 6 4 4  

• 0 .88894  
• 0 . 4 4 9 9 5  

X ~4 - 17X ':z + 1 1 1 X  1~ - 359) (  8 

+ 6 1 7 X  6 - 5 6 0 X  4 + 2 4 7 X  2 - 41 

_.+ 2 .48973  
_+ 1.9831 7 
4- 1 .68145  
+ 1 ,31233  

• 1 . 1 1 5 5 8  

• 0 . 8 0 1 2 5  
• 0 . 6 5 7 4 8  

X 1 4 - 1 7 X 1 2 + 1 1 1 X l O -  358X8 
+ 6 1 1 X  6 - 5 4 4 X  4 + 229) (  2 - 34  

• 2 .46722  

• 2 . 0 5 6 2 9  
• 1 .56477  

4-,/2, 
• 1 .10083  
• 0 .84329  

• 0 . 5 5 9 4 8  

[ I1 
X TM - 17) (  T 2 + 1 1 1 X  1 ~  358) (  s 

+ 6 1 0 X  ~ - 5 4 1 X  4 + 2 2 6 X  2 - 34  

• 2 .47344  

_+ 2.02691 

+ 1.63771 
• 1 .32852  

• 1 .17382  

4- 0 . 7 7 9 3 3  
• 0 . 5 8 4 3 5  

X14-17X12 + 1 1 1 X l ~  357XS 
+ 6 0 3 X  6 - 5 2 4 X  4 + 2 1 0 X  2 - 29  

4- 2 . 4 5 7 3 6  
• 2 . 0 5 3 7 7  

• 1 . 6 2 5 8 8  
_+ 1 .37652  
• 1 .14259  
4- 0 .78595  
+ 0 .53091 

Fig. 6 (continued) 

X TM - 2 0 X  TM + 1 5 9 X  12 _ 652XLO + 1495) (  8 

- 1 9 3 9 X  s + 1 3 6 1 X  4" - 450 ) (  2 + 45  

• 2 ,55446  
+ 2 .10057  
- r  1 .81067  
_+ 1 .52007  

• 1 .20392  
• 1.0 
• 0 .92621 
• 0 . 4 0 7 3 4  
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) 

) l h  

Fig. 7. Factorization of sixfold coronene-related molecular graphs into generalized irreducible unit 
subgraphs where h = ___ 1, ___ 1, ___ 2 

Figure 8 illustrates how hexabenzo[a,d,g, j ,m,p]coronene can be decomposed 
into six subgraphs with weighted vertices of h = +__ 1, + 1, and +2, and which 
can be generalized to one irreducible unit subgraph with the parameter h. Using 
Eq. (4) in Table 2, this irreducible unit subgraph is converted into two subgraphs 
without a weighted vertex. To obtain the characteristic polynomial of these 
resulting subgraphs the following relation will be needed: 

P(G+; X )  = P(G~ - e+ ; X )  - P(G~ - (et); X )  - h ~ P(Gt - Z~ ; X )  

where G~-  e~ is the subgraph obtained by deleting the complex edge e~ from 
G+, G~-  (e+) is the subgraph obtained by deleting the complex edge with its 
vertices, G s - Zt is the subgraph obtained by deleting the cycle Z+ containing the 
complex edge, and h = +_ 1, + 1, and _+ 2. Consider the generalized irreducible 
unit subgraph (G6/), of hexabenzo[a,d,g, j ,m,p]coronene.  Application of Eq. (4) 
eliminates the weighted vertex h to give the two complex edge weighted graphs 
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shown in Fig. 8, which then are transformed via the above equation to give the 
polynomial shown. Solving this polynomial for h = -  1 and - 2  gives two 
different polynomials that lead to the eigenvalues shown, and which can be 
completed by using the pairing theorem and the degeneracy for h = +__ 1. These 
results agree with the eigenvalues previously obtained by another method [ 1, 8]. 

A further example is provided by the following characteristic polynomial/ 
eigenvalue solution for hexabenzo[bc,ef, hi, kl, no,qr]coronene using its irreducible 
unit subgraph (Fig. 7). Using Eq. (4) in Table 2 followed by the application of 
the above equations results in 

- - h l  

I 

= X 7 - 7 X  5 + 1 3 X  3 - 7 X  - ( X  5 - 3 X  3 + 2 X )  - h [ ( X  2 - 1) + X 6 - -  6 X  4 + 9 X  2 - 4] + h2(X  a -- X )  

= X 7 - -  8 X  5 + 1 6 X  3 - 9 X  - -  h ( X  6 - 6 X  4 + 1 0 X  2 - 5 )  q- h 2 ( X  3 - X ) .  

Solution of this latter polynomial gives the following eigenvalues which are in 
complete agreement with previous results [ 1, 8]: 

h = l  h = 2  

0.46477 0.61803 
• • 
- 1.34807 - 1.61803 

1.51484 - 1.79129 
-2.11838 2.0 

2.48685 2.79129 

In passing, it should be noted that hexabenzo[a,d,g,j,m,p]coronene can be 
embedded three distinct ways by ethene and two distinct ways by benzene leading 
to seven eigenvalue pairs of + 1.0 and two eigenvalues pairs of _ 2.0. Likewise, 
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= X 8 - 9) (  ~ + 23 ) (  4 - 1 9 X  2 + 4 - h(X 7 - 7 X  s + 1 4 X  z - 8X)  + h 2 (X  4 - 3 X  2 + 2) 

h = - 1  h = - 2  

0 . 4 5 0 5 0  0 .55241  

+ 1 , 0 ,  - 1 . 0  • 1 .0  

1.51 0 7 9  - 1 . 2 8 7 3 3  

- 1 . 6 4 7 5 0  1 . 5 1 6 5 8  

2 . 1 6 1 6 3  + 2 .0  

- 2 . 4 7 5 4 1  - 2 . 7 8 1 6 5  

Fig. 8. Factorization of hexabenzo[a,d,g,j,m,p]coronene into irreducible subgraphs 

hexabenzo[bc,ef, hi,kl, no,qr]coronene can be embedded by ethene in six distinct 
ways and by 1,3-butadiene in one way leading to six eigenvalue pairs of ___ 1.0 
and eigenvalues of + l (x /~+  1); these results are consistent with the computed 
results. Figure 9 summarizes the results for hexa[2,3]naphtho[a,d,g,j,m,p]cor- 
onene which can be embedded by naphthalene, and by aUyl in six different ways, 
four of them being mutually exclusive. In general, for the first coronene-related 
family in Fig. 7, embedding by the pendant G,- subgraph is always possible if the 
molecular graph also has six twofold axes of rotation (as do coronene, hexaben- 
zo[a,d,g,j,m,p]coronene, and hexa[ 2,3]naphtho[a,d,g,j,m,p]coronene). 

5. Conclusion 

The origin of subspectrality in chemically relevant molecular graphs has been 
determined. The approach of Davidson has been clarified and merged with the 
author's methodology for rapidly determining the characteristic polynomial of 
molecular graphs without the aid of group theory. This work contributes toward 
the comprehensive application of graph theory in the determination of the 
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h 

h~ l  = 

-0.32993 -0.32408 
0.63190 �89 1) 

Hexa[2,3]naphtho[a,d,g,j,m,p]coronene -0.81927 -1.0 

1.0 - 1.07085 
-1.17269 1.16821 

1.29051 � 8 9  1 ) 
./2, -1.56771 _+ 

-1.86903 - � 8 9  
2.08866 1.75667 

-2.35015 2.24466 
2.53002 - � 8 9  + 1 ) 

2.79310 

Fig. 9. Eigenvalue solution of hexa[2,3]naphtho[a,d,g,j,m,p]coronene 

characteristic polynomials and eigenvalues of molecules. The fourfold and sixfold 
molecular graphs of this work possess doubly degenerate eigenvalue subsets. 
Deletion of a vertex, substitution of a heteroatom at any vertex, or placement of 
a polyene substituent at any position on these molecular graphs leads to 
successor molecular graphs still possessing the doubly degenerate eigenvalues of 
these fourfold or sixfold precursors once. Thus, the eigenvalues presented in this 
paper represent a compact compendium of select eigenvalues for many more 
molecules than those presented in Figs. 1-3, 8 and 9. 
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